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Equilibrium and relaxation in turbulent wakes 
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(Received 15 September 1971) 

In  order to study the memory of the larger eddies in turbulent shear flow, ex- 
periments have been conducted on plane turbulent wakes undergoing transition 
from an initial (carefully prepared) equilibrium state to a different final one, as 
a result of a nearly impulsive pressure gradient. It is shown that under the con- 
ditions of the experiments the equations of motion possess self-preserving solu- 
tions in the sense of Townsend (1956), but the observed behaviour of the wake is 
appreciably different when the pressure gradient is not very small, as the flow 
goes through a slow relaxation process before reaching final equilibrium. Measure- 
ments of the Reynolds stresses show that the approach to  a new equilibrium state 
is exponential, with arelaxation length of the order of lo3 momentum thicknesses. 
It is suggested that a flow satisfying the conditionsrequired by a self-preservation 
analysis will exhibit equilibrium only if the relaxation length is small compared 
with a characteristic streamwise length scale of the flow. 

1. Introduction 
Relatively few detailed studies have been made of relaxing turbulent shear 

flows (see Tani (1969) for a recent survey of earlier work), and the unsatisfactory 
state of our knowledge of the subject has been emphasized by Coles (1969), who 
called it (after completing an exhaustive examination of all available data) “the 
darkest corner in the experimental picture ”. The present work concentrates on 
relaxing wakes perturbed from equilibrium by a pressure gradient (we hope 
that the postponement of the definition of the terms to the end of this section 
will not make the following remarks entirely unintelligible). The classic work of 
Townsend (1949, 1956) has shown how a study of the plane wake has provided 
much fundamental understanding of equilibrium turbulent flow; the investiga- 
tion of relaxing wakes is attractive not only because well-defined equilibrium 
states exist and can be realized experimentally, but also because of the result - to 
be demonstrated below in 0 2 -that self-preserving solutions can be found for 
arbitrary pressure gradients provided that the wake defect velocity remains 
sufficiently small. This linearizing assumption, which is quite natural from ex- 
perience with the constant-pressure wake, does not impose as severe a restriction 
on the validity of the analysis as it may appear to do at  first sight; it is for example 
entirely adequate, as we shall see, for describing the experiments of Gartshore 
(1967) on self-preserving wakes in adverse pressure gradients, although his own 
analysis did not use the assumption. 

-f Present address : Department of Mathematics, University of Strathclyde, Glasgow. 
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These linear self-preserving solutions have provided a framework for the 
present experiments, which were undertaken in the spirit of Clauser’s ‘black box ’ 
(Clauser 1956): a carefully prepared equilibrium wake was subjected to a nearly 
impulsive pressure gradient by changing the free-stream velocity from its initial 
value U, to a final value U, over a relatively short distance. The resulting shock- 
like transition from one equilibrium state to another is found not to obey the 
self-preserving solution although the conditions required by the analysis are 
fulfilled in the experiments; it follows that no local theory (e.g. Prabhu 1966) 
will be valid either. Instead the flow undergoes a slow relaxation process, the 
final equilibrium state being attained exponentially to a good first approximation. 

Before proceeding further it is necessary to consider what meaning the word 
equilibrium should carry, for, as the discussions at  the Stanford Conference (Kline 
et al. 1969) revealed, there is no universal agreement on this question. Clauser 
(1954) used the word to denote the existence of similarity in the mean velocity 
distribution in the outer part of a turbulent boundary layer with the choice of 
appropriate length and velocity scales. Observation shows that in the wake the 
defect velocity profiles have the same nearly Gaussian shape, to within ex- 
perimental error, at any rate, even in quite strong pressure gradients; taken 
together with the failure of local theories already noted, this suggests that mere 
similarity in velocity distributions is not always an adequate criterion on which 
to base a useful equilibrium concept. 

Following the idea of self-preservation and moving equilibrium discussed by 
Townsend (1956)) we adopt here the operational definition that: a turbulent shear 
$ow i s  in equilibrium in a region i f ,  at every streamwise station in the region, the 
distributions of mean velocity and the turbulent stresses exhibit similarity with 
essentially the same scales. To clarify the terminology, consider as an illustration 
the two variables w and T ,  respectively an appropriate mean velocity (e.g. the 
wake defect) and Reynolds stress (e.g. shear). Each separately exhibits similarity 
if we can write 

w(x,  3) = w0(x)f[y/6(x)1, ‘(%, Y) = To(x )  g[Y/6T(x)l, (1.1) 

where x and y are co-ordinates along and normal to the main stream, and wo, T ~ ,  

6 and 6, are suitable local scales. In  equilibrium, these scales are inter-related 

(1.2) 
such that? 

(and similar ratios of scales of all other relevant mean velocity and stress com- 
ponents) are independent of x. Townsend’s self-preservation analysis deduces, 
from only the mean conservation equations of mass and momentum, the 
(necessary) conditions for equilibrium to prevail, and furthermore obtains self- 
preserving solutions for the flow which prescribe functional forms of the scales 
wo(x), 6(x) etc. All equilibrium flows are self-preserving, but the need to make 
a distinction arises because (to anticipate our chief conclusion) the existence of 
self-preserving solutions is not sufficient to ensure that the corresponding flow 
will be in equilibrium. This possibility, which has already been recognized (e.g 
Townsend 1956, p. 93)) here is explicitly related to the relaxation characteristics 

i We use kinematic units for the stresses. 

wo(x)/T!(s), 6(x)/6T(x) 
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FIGURE 1. Sketch defining notation. 

of the shear flow. A second reason for making the distinction is that it seems more 
appropriate to call a related concept which we shall need later (Prabhu & 
Narasimha 1972) local equilibrium rather than local self-preservation. 

2. The self-preservation analysis 
If all viscous and the normal turbulent stresses are neglected, the equations 

governing the development of a plane incompressible turbulent wake are, in the 
boundary-layer approximation, 

au av Z'ay = 0, 

au au au a7 u-+v- = u-+- ax ay ax ay 

The notation is defined in figure 1. Consider now shallow wakes, in which the 
maximum value of the defect velocity w(x, y) = U ( x )  - u(x ,  y), say wo(x), is much 
smaller than the free-stream velocity U ( x )  at each streamwise station 2. If 
2w/8x can be neglected in (2.1), we have 9 N - ydU/dz  = -yU', and (2.2) 
simplifies to 

(dropping higher order terms in wo/U). With T taken as proportional to  wt, this 
equation shows that the appropriate pressure-gradient parameter is the ratio of 
longitudinal to shear strain rate: 

where S is some measure of the wake thickness. The strain ratio can be of order 
unity without violating the boundary-layer approximation, provided that the 

h = U'S/Wo, (2.4) 

1-2 
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length scale associated with streamwise variations of the flow quantities, say 
U/U' ,  is much larger than 6;  i.e. if 

hwo/U -g 1. (2-5) 

If U' = 0 the appropriate length scale is x instead of U/U' .  Condition (2.5) will 
be amply satisfied in the experiments to be reported here. 

Following Townsend (1956), we now seek self-preserving solutions by putting 

W(X,Y) = w,(x)f(s), 7 ( x ,  Y) = w%J(s), q = y/&(x); (2.6) 
from (2.3) we then get the equation 

where primes on f and g denote differentiation with respect to q. To satisfy the 
requirements of self-preservakion the terms in square brackets in (2.7) must be 
independent of x. This gives us two conditions on the three quantities U ,  w, 
and 6, with the immediate consequence that for arbitrary U(x) the other two 
quantities are determined, or equivalently that self-preserving solutions exist 
for arbitrary pressure gradients. 

These solutions can be written down in a particularly simple form in terms of 
the quantity 

which must be independent of x in a shallow wake with similar velocity profiles. 
This result follows by integrating (2.7) or from the K&rm&n momentum integral 
equation, by noting that the shape factor for a shallow wake is approximately 
unity and that M is proportional to U3 times the momentum thickness 0. A con- 
sequence of the constancy of M is that the coefficients in (2.7) are equal; if their 
common value is K,, the wake development is given by 

M = U2woS, (2.8) 

---=- - + constant, ( U W  - 1 
M 2  (UW,)~ M U(x) 

which implies that, for any U(x), the quantities US and Uw, in the self-preserving 
solutions have the same dependence on the time-of-flight variable 

(2.10) 

as in a constant-pressure wake. Results similar to (2.9) have been given earlier 
(Hill 1962; Prabhu 1966), but such derivations have been based, in contrast to 
the present approach, on some specific model for the turbulence. Of course such 
models will also provide explicit solutions for the velocity profile (whatever their 
worth). For later reference, we note that with an eddy viscosity vT defined by 

= - VT amlay, VT = kowos, (2.11) 

(2.12) 

and k, assumed t o  be a universal constant, the relevant solution of (2.7) can be 
written as 

with suitable normalization ( K ,  in (2.9) now being 2k,ln 2). 

f(r) = exp(-r21n2) 
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FIGURE 2 .  Wake development in Gartshore's experiments. A, ( US/UIS,)z; 0, ( Uwo/Ulwo1)-2; 
-, linear self-preservation theory, with K,/2 In 2 = O.OG5.  T is measured from an initial 
station xl, whose position, in terms of the width of the square rod generating the wake, 
is 72.2 in wake A (h  N 0.043) and 66 in wake B ( A  1: 0.02). 

If, as suggested by Townsend (1956) for a constant-pressure wake, more 
general solutions contain a term of order xi on the right-hand side of (2.9), it 
is preferable to write the present solutions in the form 

Uzb2/MT = 2K, = M/U2w;T (2.13) 

to emphasize their asymptotic nature for large x. When U is constant so is 6 
(by momentum conservation), and the parameters b2/x8 and Uz6/w:x, pro- 
portional to those in (2.13), are then more convenient. 

To assess the power of the crucial assumption of small defects in the above 
'linear' theory, we present a comparison (figure 2) between our theory and two 
sets of wake measurements reported by Gartshore (1967). In  these experiments 
the defect ratios were maintained approximately constant at  0.19 and 0.24 
respectively, through the use of a suitable external pressure gradient.t The 
excellent agreement shown in figure 2 establishes the useful conclusion that 
linearization of the inertia terms should be entirely adequate for defect ratios at  
least as large as a quarter. 

3. The experiments 
We report here the results of measurements in two flows, designated F 1 and 

F 2. These were part of a wider series described by Prabhu & Narasimha (1972), 
where additional details will be found. 

t The experiments were in fact accompanied by an analysis, not limited to small defects, 
that showed that self-preserving solutions exist only when wo/U and S/x are constant and 
U is proportional to 2". When linearization is permissible these conditions implying constant 
h are unnecessary, as we have seen, but of course the value of rn ( = - f) required for a small 
(and constant) defect ratio in Gartshore's theory is identical to that deduced from (2.9). 
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3.1. Apparatus 
The experiments were conducted in a 1 x 1 f t  tunnel whose test-section length 
had to be extended to 14ft from the original 12ft because experiment showed 
the greater length to be necessary for attainment of the final equilibrium state. 
The short favourable pressure gradients imposed on the wake in both F 1 and 
F2 were obtained by the use of side-wall liners which produced a contraction 
in the tunnel cross-sectional area over a distance of about 6 in. The free-stream 
velocity distributions U ( x )  in the experiments are shown in figures 5 and 6 below. 
A sketch of the tunnel will be found in Prabhu & Narasimha (1972). 

All turbulence measurements reportid here were made with Pt-Rh probes, 
the wire diameter being 0.0001 in. for straight wires and 0.0002in. for X-wires. 
A constant-current hot-wire amplifier and average-square computer built in the 
laboratory (Prabhu 1968) were used for processing the signals. Some measure- 
ments were repeated with a Shapiro-Edwards set; the differences were always 
less than 3 %. Velocity profile measurements were made with a round Pitot tube 
of outer diameter 1mm and a micromanometer reading accurate to within 
0.05 mm alcohol. 

3.2. Wake generator 
After trials with various bodies, the twin-plate configuration shown in figure 3 
was adopted to generate a wake, as it fulfilled the obvious practical requirement 
(important for the studies contemplated here) of relatively early attainment of 
equilibrium. This is demonstrated in figure 3 using earlier measurements of the 
wake behind a circular cylinder (Townsend 1949; Uberoi & Freymuth 1969). 
The parameters chosen here for illustration, namely P/x8 and GJw0 (where Gc is 
a characteristic root-mean-square value of the longitudinal velocity fluctuations), 
should become independent of x in equilibrium, as discussed in $5 1 and 2; they are 
preferable to the more usual combinations of the form (S/8)2 or (U/G)2,  whose 
plots against x suffer from a basic uncertainty about the virtual origin (Townsend 
1956, p. 137). 

It is clear from figure 3 that both the manner and the rate of approach to 
equilibrium can depend strongly on the initial conditions : the slow equilibration 
in the case of the circular cylinder is presumably due to  the violent motion in the 
near wake following separation on the body. The asymptotic values of S2/xtl show 
good agreement, but the best that can be said for CJw, is that the different 
observations are not inconsistent, as variations are noticeable in the circular- 
cylinder measurements even for 316' > 103. The attainment of equilibrium in the 
present measurements is more closely demonstrated by the C and T distributions 
across the wake, to be discussed in $ 5 .  

4. Relaxation of mean flow quantities 
Although the turbulent energy and stresses may be expected to provide the 

more fundamental information on the nature of relaxing flows, it is worthwhile 
to consider first the observed development of the mean flow in relation to the 
self-preservation theory. 
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FIGURE 4. Defect velocity profiles selected randomly from the measurements of Prabhu & 
Narasimha (1972) and Townsend (1949). 0, flow F 2  ( A  = 0); x ,  F 3  ( A  = 0.35); 0 ,  MJ 
( A  = - 0.152); 0, A t  ( A  = -0.188); V F 4  ( A  = 1.57); A, Townsend ( A  = 0).  
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4.1. Mean velocity proj2es 
Figure 4 shows, in the normalized variables w/wo and v, several defect velocity 
profiles chosen randomly from the various experiments reported by Prabhu & 
Narasimha (1972), but including flows not in equilibrium in the sense of our 
definition in $1. It is perhaps not very surprising that pressure gradients and 
departure from equilibrium have no significant effect on the normalized profile; 
for all practical purposes the experimental data define a unique function, say 

(A table of this function and some related integrals are given by Narasimha & 
Prabhu (1971).) Also shown in figure 4 are the Gaussian curve (2.12) and the 
wake function of Coles (1956), suitably renormalized so that f(0) = 1, f(1) = 4. 
The approach to the free-stream velocity is faster than that of the Gaussian 
curve, as in the constant-pressure wake (Townsend 1956), but slower than that 
of Coles’s wake function. 

4.2. Mean $ow parameters 
Data for 6 and wo from experiments F 1 and F 2 are shown in figures 5 and 6, 
respectively, in non-dimensional variables in which the linear self-preserving 
solution plots as a straight line. Also shown in the diagrams are the free-stream 
velocity distributions U ( x ) ,  the strain ratio h and the quantiby MIMI, where Nl 
is the value of M (defined by (2.8)) at some suitable initial station. I f  the two- 
dimensional momentum integral is obeyed M/M, = 1 for all x, so that observed 
departures of M/Mlfromunityprovide ameasure of the lack of two-dimensionality 
in the flow. 

It is clear that even with the small strain ratio of F 1 there is no complete 
agreement with the self-preserving solution downstream of the pressure gradient, 
but the differences (revealed only because measurements were made at a large 
number of streamwise stations) are not large; they can if one wishes be attributed, 
over the range of the measurements, to a shift in the virtual origin, which is, 
however, an ambiguous and limited concept (as discussed in $2) .  Even this 
unsatisfactory way of describing the effect of the pressure gradient is not available 
when the strain ratio is higher, as in F 2: here no shift in origin will account for 
discrepancies in both 6 and w,,, The slight departures in this flow from strict 
two-dimensional momentum balance far downstream can be allowed for by 
making convergence corrections as described by Prabhu Q Narasimha (1972), 
but these are too small to account for the observed differences. The adequacy of 
the linear approximation in the theory cannot be questioned either, because its 
validity for much higher defect ratios than in F 2 has been demonstrated in 3 2 .  

We must therefore look to the strain ratio as a possible parameter governing 
the applicability of the self-preserving solutions; from an examination of its 
values in the present experiments as well as in Gartshore’s (in which h is re- 
spectively positive and negative), we may tentatively conclude that the absolute 
value of h must be sufficiently small in some sense for self-preserving solutions 
to be observed. 
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FIGURE 5. Wake development in flow F 1. The self-preserving solution corresponds to 
K,/2 In 2 = 0.065. Dashed lines through the experimental points produce backwards to 
a slightly shifted virtual origin. Points for w,, are not shown separately where they are 
indistinguishable from those for 6. 

2 t  
0 0 0 0 0 0 0 0 0  0 0 0 0 

1 

0 15 20 5 10- - 

1 .0 

0.5 

0 

UITlf4 
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FIGURE 7. The approach to new equilibrium values of wake defect and thickness parameters 
in F2. Final equilibrium: -, uncorrected values; ---, ‘ corrected’ values allowing for 
the effective convergence of the flow. Flagged points are repeats. 

That the ‘discrepancies’ noted in figure 6 might in fact be described as relaxa- 
tion of the flow is shown graphicalIy in figure 7, where we examine the variation 
of parameters of a type suggested in $2, namely S2/x8, and wEx/U;e,; here and 
in what follows subscript I refers to the initial equilibrium state, before the 
application of the pressure gradient, and 2 to the final asymptotic equilibrium 
state downstream of the pressure gradient. Using bars to denote equilibrium 
values, we must have, asymptotically as x -+ 00, 

where the quantities in square brackets are universal numbers and are listed 
in the appendix (along with some others) for convenient reference. The expected 
final equilibrium value of each variable, calculated using (4.2), with and without 
convergence corrections, is shown in figure 7. It is obvious that the flow in F2 
is an extremely slow relaxation from one equilibrium state to another. 
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7 
FIGURE 8. Distribution of longitudinal turbulence intensity across the wake in F2, using 
mean flow scales. -, equilibrium; 0, U,T/B, = 3.35 (A = 0); 8, 4-60 (h = 0); 0, 5.8 
(A = 0); a, 8.35 (h = 0.12); x ,9.70 ( A  = 0.02); 0 , 2 1 . 4  ( A  = 0). Flaggedpoints arerepeats. 
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FIGURE 9. Reynolds shear stress distributions across the wake in F2. 0, 5 = 10 in.; 
v, 15 in. ; *, 20 in.; 8 , 35 in.; A, 44 in.; x , 53 in. Equilibrium distribution: -, Gaussian 
velocity profile; ---, true measured velocity profile. his 0.025 at z = 36in. and zero at  the 
other four stations. 

5. Relaxation in the Reynolds stresses 
To obtain a more direct and quantitative indication of the approach to equi- 

librium fairly extensive measurements of the Reynolds stresses (both normal 
and shear) were made in F2. Figures 8 and 9 show the distributions of G/w0 
and T/W$ across the wake at various stations. Upstream of the pressure gradients 
each of these quantities is seen to define a unique function of 7, thus confirming 
the existence of equilibrium. On the other hand the strong departures which are 
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FIGURE 10. Streamwise distribution of characteristics of the Reynolds stress distributions 
in F 2. Both rmaX and ijmax/Cmax are normalized by their values at  the first station. ST is defined 
as the value of y where T is maximum, and the bar on the curve shows the uncertainty in 
its determination. 

noticeable even far downstream of the pressure gradient are sure evidence of 
a slow relaxation. 

If one insists on using an eddy viscosity, then r/wi is easily seen to be propor- 
tional to the coefficient k, of (2.11). The large variations in r/wi revealed by 
figure 9 therefore imply correspondingly large variations in the eddy viscosity, 
which does not augur well for a t  least those simpler theories assuming k, to be 
a universal constant. Interestingly enough, the shear stress itself does not show 
strong variations; examination of a characteristic value at  eachstation, illustrated 
in figure 10, provides unmistakable evidence that during the straining caused by 
the pressure gradient the stress hardly changes. We conjecture that this ‘stress 
freezing’ is a phenomenon characteristic of rapid distortion, of the type discussed 
by Batchelor & Proudman (1954) for homogeneous and (initially) isotropic 
turbulence. The conjecture rests at present on two grounds. First, it  explains 
the observed increase in the ratio of the normal to longitudinal fluctuating 
velocities, ij/G (figure 10); second, the relevance of rapid distortion effects to highly 
accelerated turbulent shear flows has been demonstrated in recent work on a 
contracting two-dimensional channel flow (Ramjee, Badri Narayanan & Nara- 
simha 1972). It is at least phusible that an increase in v” relative to lii: would 
counteract the decrease in shear stress that would have occurred had the flow 
been in equilibrium through the pressure gradient. However, a satisfactory 
theoretical treatment of rapid distortion of shear flow turbulence is necessary 
before these arguments can be tested in detail. 
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FIGURE 11. Distribution of 7/Cz across the wake in F 2.  , x 21 10 in. ; 0, 15 in.; A, 35 in. ; 
0, 87in.; bar shows probable error in evaluating coefficient a t  a typical point in the tail. 
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FIGURE 12. Internal similarity in Reynolds shear stress distribution across wake in F2, 
using7~~andSasscales .  O , z =  10in.;V, 15in.; a,27in.;  ,@,35in.; A,44in.; x,53in.; 
0 ,  87 in.; Q , 135in. ---, stress distribution calculated from the measured velocity profile 
making the same assumptions as in linear self-preservation theory. 

Although the scales characterizing the mean velocity and Reynolds stress are 
thus essentially different in non-equilibrium, certain kinds of internal similarity 
still persist. Figure 11 shows that 7/ii2 varies much less during relaxation than 
r /w i ,  thus lending support to the kind of hypothesis made by Bradshaw et al. 
(1967) in their method of computing turbulent boundary layers. A more obvious 
kind of similarity is that shown in figure 12, where local scales, as in (l.l),  have 
been adopted: the shape of the stress distribution curve, like that of the velocity 
distribution, is hardly affected by non-equilibrium conditions. Whati is interesting 
(and potentially useful for calculations of wake development) is that the length 
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FIGURE 13. Approach to new equilibrium in F2 as shown by three measures of departure 
from equilibrium. Bar on the q7 curve corresponds to a 1 yo error in measurement of 7. 

scales S(x) and 6Jx) keep in step with each other, so that the ratio 6(x)/ST(x)  of 
(1.2) is independent of x (figure 10) even when W , ( X ) / T ~ ( X )  is not. The normal 
stresses ,ii2 and f i 2  are also found to exhibit the same kind of similarity, but the 
data will not be presented here. 

This special kind of internal similarity enables us to devise simple measures 
of the departure from equilibrium at any given streamwise station. Figure 13 
shows the variation with x of three such measures, defined by 
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Experiment u2 (ft/s) O2 (in.) Z, (in.) 1 0 4  x (O,/L",) 

F 2 a  43.9 0.0236 63 3.8 
F2b  = F 2  76.2 0.0243 56 4.3 
F 2 c  95.2 0.0239 58 4. I 

TABLE 1. Measured relaxation lengths 

where bars denote equilibrium values (listed in the appendix, as determined from 
present measurements at constant pressure). It is seen that a t  least to a good 
first approximation the approach to equilibrium in the final stages is exponential. 
The data for q, are the most convincing in this respect, although the last couple 
of points show appreciable scatter, chiefly because there q, involves small dif- 
ferences between nearly equal quantities. In  the region where the behaviour is 
exponential we can define a relaxation length L such that q N exp ( - x/L).  It is 
seen that the observed values of L are generally quite large; xu and E, (which are 
practically the same) are particularly so. Even L,, which is only about half of E,, 
is of the order of 2 ft. The departure from equilibrium is sufficient to be noticeable 
as far downstream as 8 f t  from the pressure gradient perturbation ! 

It is reasonable to suppose that it should be possible to describe the final 
stage of relaxation as a perturbation on the new equilibrium state, and hence 
that the relaxation parameters are determined by the asymptotic values of the 
wake variables. As an equilibrium wake is, however, completely characterized 
by U and 8, the argument suggests that L must be proportional to 8, and (on 
dimensional grounds) independent of U,. This has been confirmed by experiment, 
by making relaxation measurements of f,i at three different free-stream velocities 
with the same experimental configuration as in flow F 2. The results are shown 
in table 1. More data would obviously be desirable, but we may tentatively 
conclude that OIL N 4 x 10-4. 

6. Discussion 
From the experiments described here, we find that, while a wake may reach 

equilibrium more quickly behind particularly favourable wake-generating con- 
figurations, a perturbation on this equilibrium wake in the form of an impulsive 
pressure gradient results in a decidedly slow relaxation process towards the new 
equilibrium state. Within the pressure gradient region, the turbulence appears 
to respond as to a sudden distortion, at least qualitatively. It is interesting that, 
while the mean velocity and Reynolds stress scales quickly depart from their 
characteristic equilibrium inter-relation on the imposition of the pressure gra- 
dient, the length scales describing the distribution of the same quantities across 
the flow nearly maintain their equilibrium ratio. 

The measurements indicate that we may take the h a 1  approach to equilibrium 
to be exponential, at least as a working hypothesis. The rather large relaxation 
lengths so defined are consistent with the marked effect of initial conditions on 
the growth of a mixing layer as observed by Bradshaw (1966). 



16 R.  Narasimha and A .  Prabhu 

The chicf conclusion we draw from the experiments is that the existence of 
self-preserving solutions of the mass and momentum equations, obtained by the 
usual analysis, is no guarantee that the corresponding flows will actually be 
observed, even though the conditions required by the analysis are apparently 
fulfilled. Clearly, additional conditions must be satisfied in order that equilibrium 
may prevail, and it is natural to expect that they will involve the relaxation length 
L introduced in $5. It should thus be necessary that L be much smaller than 
a length characteristic of the pressure gradients, say U/U' .  Recalling that 
L w 1030 and UO = O(w,6), the condition can be written as 

A(~QY)Z 103 < 1. (6.1) 

For (wo/U)a N which is typical of the measurements reported here, the 
above condition is consistent with the requirement that h be small for self- 
preserving solutions to provide an adequate representation of the flow. 

It has of course been long realized (Townsend 1956) that such a self-preserving 
solution, even when it exists, can in general be expected to hold only 'eventually '. 
However, the explicit recognition of a chracteristic relaxation time for a turbulent 
shear flow implies that a large number of possible solutions can never be attained 
in reality, irrespective of how long the flow is permitted to  develop. 

We thank t,he Director of the National Aeronautical Laboratory and his 
colleagues for a brief loan to us of their Shapiro-Edwards hot-wire set. 

Appendix. Equilibrium wake parameters 

measurements, are listed below. 
Some characteristic parameters for equilibrium wakes, as found from present 

- &yxo = 0.089, w ; x / u v  = 2.34, 
- 

?,ax/Wi = 0.045, Gi,ax/Wo = 0.27, 
G/iii, = 0.24, E/z = 1-18, on the centre-line. 

f 2 d y  = 1.50, 1:: - 
1::- f d q  = 2.05, 

k, = 0.065, wo&/v7, = l/k, = 15.4, SILT = 8.2 x lop4. 
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